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Abstract. An integral transformation generalidng the Bargmann transform is established 
among two sets of wavefunctions associated with the configuration and Bargmann-Fock- 
Segal-like representations of a relativistic harmonic oscillator. The time-independent 
configuration-space wavefunctions are also studied and the lack of unitarity occurring when 
factorizing the time dependence of the wavefunction is solved by modifying the scalar 
product. 

Recently [l], an SO(1, 2)  algebra of operators E, R, 1, has been interpreted as the 
quantum symmetry algebra of a relativistic harmonic oscillator in 1 + 1 dimensions, 
and realized in configuration space on a Hilbert space of wavefunctions generalizing 
the weight function (Gaussian)+as well as,the Hermite polymonials. Furthermore, an 
SL(2, R) algebra of operators E, t, 2', had been represented [2] in terms of creation 
and annihilation operators acting on complex analytic functions also generalizing the 
Bargmann-Fock-Segal (BFS) representation for the ordinary harmonic oscillator. It is 
then quite natural to look for the isomorphism between the two group representations 
that generalizes the Bargmann transform [3]. 

In this letter we wish to provide an integral transformation connecting the wavefunc- 
tions of the relativistic harmonic oscillator in configuration space and the corresponding 
Fock-like states. Let us specify the two sets we wish to relate. On the one hand, we 
have a Lie algebra of operators 

[E'.$] =imw2h? ,. h 
[E, R]= -i- @ m 

which is an affine version of the SO(1,2)(1+ 1 anti-de Sitter) aigebra, giving the appro- 
priate limits as 0-0 and/or c-m. The algebra (1) is realized by 

a . wx , a mwsinwt 
ox ne2 at a 

@ = -iha cos w t  ,+ ili - sin w t  -+ X 

as inwt  a xcoswt a 
a mw ax amc2 at 

-+ifi-- . I C O S W t  
,y=- x+ili- 
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acting on the conf?guration-space wavefunctions 

where 

is a red number which measures how relativistic the system is 

are polynomials generalizing the Hermite polynomials [l]. They are written as 

H,"(5)=z~ s!(n-2s)! ( N + s - t ) !  (2N)"(2N- l)! 
(25Y-a. . (4) 

["DJ (-I)%! Ns(N- i)! (2N+n-  I)! 

Note in particular that the vacuum is characterized by the functions 
the Gaussian one, which is in turn regained in the l i t  N-m. 

accordance with this scalar product) : 

rather than 

The scalar product defining the Hilbert space is as follows (C," has been chosen in 

, 
(5) ( y N l y  ) -c  c &dte-i(m-n)w - (ZN+n+m) N N - 8  

n m  N -  ; z J  a H n H m -  nm 

where the integration measure is the invariant volume on the SO( 1,2) group once the 
p-dependence has been factorized out (unlike in the non-relativistic case, this requires 
a non-trivial regularization procedure [4]). 

On the other hand, the a f i e  version (trivial central extension) of the 
,SL(2, R)%SU(l, 1) algebra 

. 

- 
(6) 

1 -  - 
[h, 21 = -2i  [i, i t ]  =2s+ [i, i t ]  =- h+ 1 

2N 

generalizes the algebra of creation and annihilation operators of the non-relativistic 
harmonic oscillator in the sense that both o+O and c-CO limits are regained. 

The isomorphism between the algebras ( 1 )  and (6) is established through the 
relations 

1 
(7) at=- 

Ao 2mwA 
h=--E .. 2i - i==(mo.2+$) 1 r.(mu.2-i$). 

Adopting normalized eigenstates of E, In), in the form 
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the quantum representation aquires the expression: 

The formi 

@ n )  = Ronln). 

(9) generalizes the non-relativistic Foj 
The algebra ( 6 )  is r e a l i  by 

space representation. 

when acting on complex functions 

where ~ = ( l +  (2zz*/N))"'. Note again that the vacuum 10) is associated with the 
function ( (1  + ~ ) / 2 ) - ~ ,  which in the limit N - m  leads to e-''*'?. The scalar product in 
our BFs-like space is 

where the integration measure is now the whole invariant volume on the SL(2, R) 
group. 

We now arrive at the central issue of this letter. The relativistic Bargmann transform 
(RBT) is intended to transform the energy eigenstates in the relativistic BFS space, i.e. 
(z, t ln)=pr(z ,  z*, t) ,  into the energy eigenstates in configuration space, i.e. 
(x ,  t l  n>E'€'f(x, t ) ,  and vice versa. We formally write for the kemel ( x ,  flz, t )  of this 
integral transformation ( x ,  f l n > = j  (dz/r) dt(x, t'lz, t)(z, tln) 

<x, t ' /z , t>= 1 <x,f'In>(nIZ,t> 
m 

n=0 

which can be viewed as the generating function for the complete wavefunctions in 
codguration space. 



L1178 Letter to the Editor 

We must now sum up expression (13). From Rodrignes' formula [5] for the poly- 
nomials H t (  (), an integral representation for these can be found [6] 

C being a contour including the points= 5 and exluding kifl.  Putting this expression 
into (13) we obtain an integral representation for (x, f ' l  z, t ) :  

In (15) the symbols J and 1 can be interchanged and the geometrical series summed 
up. In fact 

Since the integral 

has a simple pole at 

the formula (15) can be 6nally computed: 

In the limit N+m, {x, 1'1 z ,  t )  leads to the kemel of the non-relativistic Bargmann 
transform 

(x, t'lz, t y = -  0 - 1 ("")'I' - e-lzlw ep/z e-* 
2nJ;; An 
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where 

The first exponential factor in 19 constitutes the generating function for the ordinary 
Hermite polynomials H,( su (inw/h)x).  

We must stress the different structure of the time evolution in the general theory of 
the relativistic harmonic oscillator as compared with the non-relativistic analogue. The 
time parameter cannot be factorized out in a natural way (see later). The appearance 
of the partial weights a-n in the wavefunctions in configuration space or, ((1 + s)/2)-" 
in BFS space (although the transformation 

z+$-L N l+s  

taking the complex plane to the open unit disk. hides the partial weights [7]), is traced 
back to the presence of a time derivative term in the quantum operators. Note that the 
RET has to be established between the complete wavefunctions, i.e. including the partials 
weights, and, therefore, it is not possible to factorize the generating function of just the 
relativistic Hermite polynomials in the RBT (see [6] for the generating function of the 
polynomials Ht, i.e. without the weight function). 

Another consequence of the structure of time evolution (manifest covariance of ow 
configuration space representation) is the need for the time integration in the scalar 
product (5). In fact, a naive factorization of the time dependence in the wavefunctions. 
operators and scalar product leads to a non-unitary representation; the functions 
@f(x) are no longer orthogonal nor the operators i and 2' in (7) adjoint to each other. 
The x-representation can be nevertheless 'unitarized' by changing the integration 
measure, &+&/a2, and by redefining the operators i and 2' properly. After this 

with a new normalization factor CkN. it should be noted md 5' 
have acquired an extra factor depending on n in addition to the naive replacement iha/ 

The redefinition process really parallels the multipliers method used in the literature 
[7-91 to constrnct unitary representations of a group G when a natural invariant volume 
is absent. The measure &/a2 is left invariant under the U(l) subgroup of S0(1,2),  
i.e. the time evolution, so that the energy operator is not affected by the multipliers. 

it the operators 

at-awn. 
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Although the representation (20) is not manifestly covariant, it redly constitutes a 
well-defined theory of orthogonal functions (polynomials with partial weights) tied to 
the relativistic harmonic oscillator. 

Even though the BFS-like representation ( 9 , l l )  can be directly restricted to de z ,  z*- 
dependence without losing unitarity, a time-independent RET is not directly defined 
since the new family of representations (20) admits a larger spectrum of N. In fact, the 
allowed values of N are those for which the vacuum admits a finite norm, and C,” in 
(3) is defined for N>$ whereas CLN in (20) is fmite also for N>O. It should be stressed 
that only half-integer values greater than correspond to single-valued representations 
of SL(2, R)  (the rest are associated with the universal covering group). 

In order to construct a time-independent RET we should first extend the BFS-like 
representation to admit these new values for N, and this means modifying the scalar 
product and operators in a way similar to that of (20). This is achieved by the following 
expressions : 

.~ 
,y JZ L J-’ 2(2N+n)! 

2a 2(N)!(2N)” 

although other realizations are also~allowed. The extended RBT now reads 

where the series is convergent (by standard theorems on alternating series) even though 
it is no longer a geometric series. A more detailed study about canonical minimal 
representations (versus the manifestly covariant ones (2), (3), (5 )  and (IO), (I l) ,  (12)) 
of the relativisitic harmonic oscillator, including mean creation and annihilation opera- 
tors and their corresponding coherent states, will be given elsewhere. 

The authors thank J Navarro-Salas for valuable discussions. This work was partially 
supported by the DGICYT. 
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